
DIRTRIBUTED QUERY OPTIMIZATION USING PERF JOINS

Ramzi Haraty, Roula Fany
Lebanese American University

P.O. Box 13-5053
Beirut, Lebanon

rharaty @beirut.lau.edu.lb, rolafany@ sodetel.net.lb

ABSTRACT

The advent of telecommunication era and the
constant development of hardware and network
structures have encouraged the decentralization of
data while increasing the needs to access
information from different sites. Query optimization
strategies aim to minimize the cost of transferring
data across networks. Many techniques and
algorithms have been proposed to optimize queries.
Perhaps one of the more important algorithms is the
AHY algorithm using semi-joins that is
implemented by Apers, Hevner and Yao.
Nowadays, a new technique called PERF (Partially
Encoded Record Filters), presented by Kenneth
Ross seems to bring some improvement over semi-
joins. PERF joins are two-way semi-joins using a
bit vector as their backward phase. Our research
encompasses applying PERF joins to the AHY
algorithm and producing the AHYPERF algorithm.
Programs were designed to implement both the
AHY and AHYPERF. Several experiments were
conducted and the results showed a very
considerable enhancement of AHYPERF over the
original AHY.

Keywords: Distributed Query Optimization, Semi
Joins, and PERF Joins.

1. I n t r o d u c t i o n

The recent telecommunication boom has
encouraged business expansion resulting in the
decentralization of data while increasing the needs
for instant information access.

A distributed database system (DDBS) is a
collection of sites connected on a common high-
bandwidth network [5]. Logically, data belongs to
the same system but physically it is spread over the
sites of the network, making the distribution
invisible to the user [6]. Each site is an autonomous

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and or
fee.
SAC'00 March 19-21 Como, Italy
(e) 2000 ACM l-Sgt 13-239-5/00/003>...>$5.00 2 8 4

database with its processing capability and data
storage capacity. The advantage of this distribution
resides in achieving performance, reliability,
availability, and modularity.

Distributed query processing is the process of
retrieving data from different sites. Accessing data
from sites involves transmission via communication
links that creates delays. The basic challenge is to
design and develop efficient query processing
techniques and strategies to minimize the
communication cost.

Nowadays, with the explosion of interest in data
warehouses and the development of huge
applications such as federation and mediation over
heterogeneous and object-oriented databases, there
is a pressing need for data reduction. This is the
main purpose of query optimization which estimates
the cost of alternative query plans in order to choose
the best plan to answer quickly and efficiently,
complex and expensive queries [7].

The query optimization problem was addressed
many times, from different perspectives, and a lot of
work has been done. Proposed algorithms and
techniques can be categorized in two main
approaches:

1- Minimize the cost of data transferred across the
network by reducing the amount of transmitted
information, and

2- Minimize the response time of the query by
using parallel processing.

Some might add another category which is the
hybrid approach, merging both data reduction and
time reduction.

In this paper, we will mainly focus on the first
approach. One of the most popular and important
algorithms suggested for query optimization with
minimum cost was algorithm GENERAL (total
cost) presented by Apers, Hevner and Yao [2]. The
advent of AHY was a revolution in query
optimization domain because it introduced semi-
joins as reducers in the query optimization process.
It uses the three-phased approach method that
consists of the following:

- Local processing to filter unnecessary data, integrate using procedure TOTAL or
COLLECTIVE.

- Semi-join reduction involving shipment of data
from one site to another to be reduced, and

Final assembly at the destination site.

Using local operations such as projections and
selections, data was filtered then shipped to other
sites. Reduction was made by gradually applying
semi-joins while transferring data from one site to
another. The improvement made over the traditional
unoptimized method was enormous.

A decade after, and with the continuous research
and methods developed, a new technique called
PERF (Partially Encoded Record Filte0 was
presented by Kenneth Ross [4]. This method adds to
semi-joins another din~ension that is the backward
phase that will be used to eliminate unnecessary
redundant semi-joins by using bit vectors.

In this paper we present an improvement over AHY
using PERF joins applied to AHY algorithm. The
paper is organized as follows: Section 2 discusses
the original AHY algorithm. Section 3 presents our
own improvement over AHY - the AHYPERF
algorithm. Section zt presents the experimental
results. And section 5 presents the conclusion.

2. The AHY A l g o r i t h m

For a special class of queries called simple queries,
Apers, Hevner and Yao have developed a collection
of algorithms to minimize the cost of query
processing. The algorithms developed in were
SERIAL and PARALLEL for total time and
minimum response time optimization respectively
[2]. Then, later they proposed an extended version
suitable for general queries called GENERAL.
Using this algorithm, data transmissions used for
reducing a relation and the transmission of the
reduced relation to the assembly site form a
schedule for this relation. Throughout this
algorithm, different schedules are built and
compared until the most optimal one is chosen.
Note also that the transmission cost between two
computers is a linear function of the size of the data.
The incoming selectivity of a schedule for a relation
is the product of selectivity of all the attributes in
the schedule. As our study mainly focuses on total
cost optimization, we will limit our discussion on
AHY to SERIAL and GENERAL:

Algorithm SERIAL: In this algorithm we are
trying to construct serial candidate schedules in
order to later integrate them with others to
form the final schedule if the results are
optimal.

Algorithm GENERAL: This algorithm creates
relation schedules by using the candidate
schedules created above for each relation and
then extracting the best serial candidate
schedule for each join attribute to try to

2 8 5

In other terms, in a distributed database system, it is
better to first perform initial local processing in
order to reduce the amount of data to be transmitted.
After initial processing, if the relations contain only
one attribute that is the joining attribute, queries are
called simple [1]. Algorithm GENERAL tries to
decompose complex queries into simple ones. Then
algorithm SERIAL orders relations by increasing
order in terms of size and starts creating schedules
for the simple queries. The resulting schedules are
examined and integrated to form an optimized
schedule [3]. For every candidate schedule to
relation R~ containing a transmission of a joining
attribute from the same relation R~, the algorithm
adds a new candidate schedule without the
transmission of this joining attribute. This step is
important because a relation cannot be reduced by
the selectivity of its own joining attribute. Then, the
schedule that minimizes the total time of
transmitting Ri, if only one joining attribute, is
considered. The selected schedule is called BESTii.
Note that procedure TOTAL does not take into
consideration the redundant transmissions due to
the fact that schedules are constructed separately.
This problem is considered in procedure
COLLECTIVE that constructs only one basic
strategy for the entire query and then tries to do
some variations in order to reach the most optimal
schedule [1]. In this paper we will discuss algorithm
AHY GENERAL Total time version using
procedure TOTAL.

2.1 C o m p l e x i t y A n a l y s i s o f Algori thm
GENERAL (Total Time)

The worst case complexity of algorithm GENERAL
was proved to be O(t~n z) where tris the number of
different simple queries (i.e., different joining
attribute to which algorithm GENERAL is applied)
and m is the number of relations in the query.

3. The AHYPERF Algori thm

Partially Encoded Record Filter, is a new two-way
semi-join implementation primitive. The basic idea
of PERF is as follows - consider two relations R and
S. Apply the following steps to the two tables:

1. Project R on a joining attribute and get PR-
2. ShipPRtoS.
3. Reduce S by a semi-join with PR-
4. Send back to R,a bit vector (PERF) that

contains one bit for every tuple in PR and in the
same order. If the tuple is matching then send 1
else send 0.

The fourth step is known as the backward phase.
The main utility of PERF is that it minimizes this
phase and hence makes the forward phase (step 2)
cost greater than the backward phase. PERF joins
can be better enhanced by sending back to R not all
the bit vector corresponding the PR but only the 0s
part or Is part according to which one is less in size

i ' :~ !S:;.i: '~i~ I - ¸ '

and hence has lower transmission cost. Figure 1
illustrates the PERF join technique.

R(A,X) .R(X,B)
al 10 100 b l
a2 20 30 b2
a3 30 50 b3
a4 40 90 b4
a5 50 20 b5
a6 66 70 b6

P E R F .)

II o
1

3 1

5 1
6 0

P E R F (~

0
1
1
0
1
0

Figure 1: PERF for R andS.

When applying PERF to AHY algorithm the
following is performed:

1. Perform all initial local processing.
2. Generate candidate relation schedules by

isolating the attributes first and then creating
simple queries.

3. For each relation Ri,
a- Use algorithm SERIAI.~PERF and

create candidate schedules.
b- Use procedure TOTAL PERF to

integrate candidate schedules.

3.1 Algor i thm SERIAL PERF

1. Order relations R isuch that

S~<_ $2 <--.. -< Sr~
2. If no relations are at the result node, then select

strategy:
Rt ~ R2 ~ - - - Rn ~ result node

Or else if R r is a result at the result node,
then there are two strategies:

Ri ~ R2 ---~ - - - ~ Rr ~ - - - R, - , R r
Or

Rl -~ R2 ... ~ Rr.l ~ R r+l ~ ... Rn "-+ Rr
Select the one with minimum total time.

3. Build a PERF list where PERF Ri ai÷l j is set to
1 when transmission was done from R i to Ri÷ I
on join attributej.

4. When calculating transmission cost,
If PERF Ri ai + i j = 1 then
Cos t = 0

Else
Cost = Co + Ct * b~ + (b~ * P(i+ l) k) /8

where Co + Ct * b~ is the linear function of
transmission cost that is equal to the fixed cost per
byte transmitted (C;) multiplied by the size in bytes
of the join attribute projected. This is the usual cost
of a semi-join known as the forward cost. (b~ * P(i ÷
i) k)/8 is the backward cost that is the cost of
transmitting back to Rt the bit vector consisting of
only matching values of the corresponding attribute.
For simplicity of this equation, we are considering
attribute k of width I byte.

286

5. Select the strategy with minimum total time.

3.2 A l g o r i t h m T O T A L _ P E R F

1. Add candidate schedules: For each relation and
candidate schedule, if the schedule contains a
transmission of a joining attribute of the
relation then add another similar schedule
without the transmission of a joining attribute
of the relation.

2. Calculate the cost of the newly added
schedules as shown in step 4 of algorithm
SERIAL_PERF.

3. Select the best candidate schedule that
minimizes the total time for each joining
attribute.

4. Update the PERF list: Set to 1 the values
corresponding to all transmissions of the
BESTij selected.

5. Candidate schedule ordering: For each relation
Ri, order the candidate schedules BESTij on
jo in ing attribute dij so that,

ARTil +C(s i *SLTil)-<..~ARTio+C(si*S LTio)
where ART is the arrival time of the best
schedule, SLT is the accumulated
attribute selectivity of the best schedule,
and s is the selectivity of the
corresponding relation.

6. Schedule integration: For each BEST~ i
construct an integrated schedule to R i that
consists of parallel transmission of candidate
schedule BESTij and all schedules BESTik
where k < j.

As it can be seen, the PERF version of AHY
algorithm does not eliminate redundant
transmissions from the schedules but it makes their
cost 0 when they occur. This can be made possible
by adding a little overhead on the transmission cost
that is the backward cost. Using this fact, if a
transmission was done from site A to site B using a
join attribute j , then every other transmission from A
to B using j will have a zero cost and every
transmission from B to A using j will have also a
zero cost. From this point, a PERF join can be seen
as a non-redundant symmetric function. This
fundamental property allowed us to enhance over
the traditional AHY GENERAL Total Time.

We note that the reduction effect of PERF is
proportional to the width of the attributes used. In
section 5, we show results from different width
selections to clarify this issue.

3.3 Complexi ty Analysis of the A H Y P E R F
A l g o r i t h m

As far as complexity is concerned, there was not a
considerable increase in the complexity of AHY
algorithm since data will be still scanned in the
same way and for the same number of times.
Ordering will also be done in the same fashion.
What is added is only the maintenance of the PERF
list. According to its implementation, PERF list
could be very easily maintained and with minimum
complexity time. In our case, PERF list was

implemented as a three-dimensional array. So
globally, and without loss of generality, we can
assume that PERF version of AHY algorithm takes
no more than O (ore 2) where o" is the number of
different simple queries, and ra is the number of
relations in the query.

4. Experimental Results

Different scenarios were conceived in order to
evaluate the performance of the different algorithms
and for each scenario programs were run 1500
times. Different kinds of results are collected:

1. Comparison of all algorithms versus the
unoptimized method, and

2. Comparison of algorithms versus AHY
GENERAL Total Time algorithm.

4.1 Scenario 1:

In this scenario the attribute width is taken as 1 byte
for all attributes.

• Comparison versus unoptimized method:

TYPE A H Y : i . AHYPERF:" AHYPERF: :.

:2;2:, :i:: 24.61
72~3~:,: ~:.:.: 37.31
.224!:: : 47.13
• 1:3':2': : ::::: 22.58
• 3~3 "~" 34.00
3-4 43.10
4-2 30.38
4-3 37.04
4-4 44.61
5-2 37.25
5-3 42.27
5-4 48.18
TOT: 37.37

31.70 7.09
43.86 6.55
53.79 6.67
30.25 7.68
40.36 6.37
48.90 5.80
37.87 7.50
43.70 6.66
50.55 5.94
44.92 7.67
49.01 6.75
54.37 6.19
44.11 6.74

Comparison versus AHY Algorithm:

TYPE " AHYPERF/AHY
2-2 9.59
2-3 10.82
2-4 13.08
3-2 10.15

-3-3:,. 10.17
• 3.~4 :I ? 10.97

, , , , , , , ,

4~2:~::i~':: :: 11.33
~ 3 , " i 11.36

, :41.4 : 11.59
5~2 :: ' 13.31
5-3 12.91

.:5-4~i i 13.27
TOT~ i :: i i 5 4

Graphically, the results are represented as follows:
comparing AHYPERF to AHY: we notice that
AHYPERF outperforms AHY in all cases.

60

40

20

4.2 Scenario 2:

In this scenario the attribute width is taken as 50
bytes for all attributes.

• Comparison versus unoptimized method:

T Y P E : iAHY:.~ A H Y ~ ! ~ i ~. !i!~I~ERF.~:i.

2~2: ::::i:- 25.29 33.22 7.93
= ,

2:3:1:::11 37.53 , 45.27 7.74
2M-: i:::::: I 48.39 56.21 7.83
3:~2::: ::~ 22.08 30.98 8.90
3"3 ?:::i:i:~l 34.34 41.98 7.64
3~4 ~" /:!! 42.81 50.02 7.21
4=2: ::::it 29.81 38.92 9.11
"i~3 ::.:. "::.l 36.27 44.01 7.75
4.M.;,: : ~i 43.99 51.33 7.34
5~.2,,: : >: 36.49 46,24 9.75
5:~311::i 1 41.75 50.01 8.26
5M 48.35 55.89 7.54
rOT ::::i 3~ i~ , i ~5~Vi : I ::::~;ili ~i:~8~08!; ~ :~ i i

• Comparison versus AHY Algorithm:

TYPE
2-2
2 - 3
2-4
3-2
3-3
3-4
4-2
4-3
4-4
5-2
5-3
5-4
TOT:

AHYPERF/AH¥
10,86
12,81
15.59
11.71
12.32
13.39
13.74
13.18
14.19
16.63
15.64
16,30
13.86

Graphically, the results are represented as follows:
comparing AHYPERF to AHY: we notice that
AHYPERF outperforms AHY in all cases.

6 0 ~'!' ~ - , ~ , , ~, ~ ~.

4 O

2O

0

287

We used two different scenarios in order to study
the performance of the above mentioned algorithms
from different perspectives. For each scenario, we
compared the performance of the algorithms with
respect to each other and with respect to the
unoptimized solution. Using different scenarios we
studied better the behavior of all algorithms under a
variety of circumstances. We could be able to note
that AHYPERF has the best performance for a field
width of 50 bytes. This result was expected because
of the overhead added by PERF to the backward
phase. Remember that PERF concept consists of
returning back to the original site a bit vector
representing the matching tuples. This overhead is
somehow more considerable when the original field
width is <= 1 byte because it might be more
profitable sometimes not to send back this data. But
when having a width of 50 bytes, the backward cost
becomes negligible as compared to the forward cost.

Finally, we can conclude that the results of our
experiments were up to the expectations and proved
the power of PERF joins and their advantage in
optimizing the total time of distributed queries.

6. Conclusion

In this paper, we have fully exposed both concepts
of semi-joins and PERF joins and then, we have
taken an optimization algorithm using semi-joins
(AllY) and enhanced it by applying PERF joins
(AHYPERF). In addition, we have discussed the
advantages of PERF joins over semi-joins which
mainly consist of removing the cost associated with
redundant transmissions by adding a relatively
negiigible cost to the backward phase of each PERF
join.

Experimental results confirmed our expectations by
showing a considerable enhancement over the AHY
algorithm. Different series of experiments were
conducted, allowing us to study even better the
efficiency of PERF joins from different perspectives
and to consider the best case for which PERF joins
perform at most. We could then, based on our
experiments recommend the use of PERF joins for
huge textual and graphic distributed databases
where the width of some join attributes is quite
large, as well as for ordinary data.

References

[1] Alan R. Hevner, O. Qi Wu and S. Bing
Yao, "'Query Optimization on Local Area
Networks", ACM Transactions on Office
Information Vol.3, No.l Pages: 35 - 62,
January 1985.

[21 Peter M.G. Apers, Alan R. Hevner and S.
Bing Yao, "Optimization Algorithms For
Distributed Queries", IEEE Transactions
On Software Engineering, Vol. Se-9,
No.l, Pages: 57-68, January 1983.

[3] Todd Bealor, "Semi-join Strategies For
Total Cost Minimization In Distributed
Query Processing", Master Thesis,
University of Windsor, Canada, 1995.

[4] Zhe Li, K. A. Ross, "PERF Join: An
Alternative to Two-Way Semi-join and
Bloomjoin", Columbia University, New
York, 1995.

[51 Li-Yun Chen, "'An Algorithm For
Distributed Query Processing In a Fiber
Distributed Data Interface, High-
Bandwidth, Token Ring Local Area
Network", Master Thesis, North Dakota
State University, May 1990.

[6] R. EI-Masri, S. Navathe, "Fundamentals
of Database Systems", Second Edition,
Addison Wesley, 1994.

[7] D. Barbara, W. DuMouchel, C. Faloustos,
P. J. Haas, J. M. Hellerstein, Y.
Iaonnidies, H. V. Jagadish, T. Johnson, R.
Ng, V. Poosala, K. A. Ross and K. C.
Sevcik, "'The New Jersey Data Reduction
Report", Bulletin Of The Technical
Committee On Data Engineering, Pages:
3-45, December 1997.

Biography

Ramzi A. Haraty is an Assistant Professor of
Computer Science at the Lebanese American
University in Beirut, Lebanon. He received his B.S.
and M.S. degrees in Computer Science from
Minnesota State University - Mankato, Minnesota,
and his Ph.D. in Computer Science from North
Dakota State University - Fargo, North Dakota. His
research interests include database management
systems, artificial intelligence, and multilevel secure
systems engineering. He has well over 35 journal
and conference paper publications.

Roula Fany is currently with the Beirut Riyad
Bank. She received her Maters of Science degree in
Computer Science from the Lebanese American
University.

288

